首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
  国内免费   2篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   9篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2009年   10篇
  2008年   15篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有162条查询结果,搜索用时 101 毫秒
1.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   
2.
An investigation was carried out to assess the potential of using polysulfone hollow fibres for the extraction of soil solution. In comparison to ceramic suction samplers the fibres were shown to contain very low levels of potential contaminants and a low exchange capacity. Carry over between individual samples was negligible permitting the accurate monitoring of temporal changes in solution chemistry. Their flexible and root sized nature makes them ideal for sampling small soil volumes. Some concern however remains about retention of colloidal Fe at the fibre interface. When comparing the soil solution of samples extracted with polysulfone fibres with those extracted by ceramic suction samplers, no significant differences in solute concentrations were observed. No sample contamination resulting from dissolution of Al or Si from the ceramic cup was detected. Analysis of soil solutions collected over a number of extractions, and during and after a rainfall event showed concentrations of elements in solution to remain relatively constant with time.  相似文献   
3.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   
4.
An open tubular capillary electrochromatography (OTCEC) column using sole porogen to form porous inner surface has been developed. The porous layer was coated on the capillary inner wall by in situ polymerization in the presence of porogen. The results show that the columns using 1-propanol as sole porogen are appropriate for protein separation. It has higher separation efficiency than the column with the usual coporogen due to much more micropores and mesopores on the porous surface and a higher specific surface area. In addition, the sensitivity of the prepared OTCEC column was improved greatly compared with the dynamically coated capillary with polyvinylpyrrolidone.  相似文献   
5.
Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA‐specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N‐terminal sequence was found in two selected peptides: F4‐2 (KPRSMLH) and F5‐4 (KPRSVSG). The peptide F5‐4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5‐4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage‐derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
目的:研究氧化锆全瓷和金属烤瓷冠修复对牙冠延长术后牙周状况的影响,为临床治疗提供依据。方法:选取2014年12月到2015年2月我院收治牙冠延长术联合牙冠修复治疗患者210例,按照随机数字表法将患者分为研究组和对照组,每组105例,研究组应用氧化锆全瓷,对照组应用金属烤瓷,比较两组牙周情况、佩戴修复体时间和康复时间。结果:研究组正常者比例为83.81%(88/105)显著高于对照组的65.71%(69/105),轻度病损者比例为8.57%(9/105)显著低于对照的21.90%(23/105),比较差异具有统计学意义(P0.05);研究组术后佩戴修复体时间和康复时间均显著短于对照组,比较差异具有统计学意义(P0.05)。结论:应用氧化锆全瓷修复能改善牙冠延长术后患者牙周情况,缩短佩戴修复体时间和康复时间。  相似文献   
7.
The water uptake region in roots is several hundred times longer than the root diameter. The distributed nature of the uptake zone requires that the hydraulic design of roots be understood by analogy to flow through a porous pipe. Here we present results of an analytical and experimental investigation that allowed an in-depth analysis of root hydraulic properties. Measurements on nodal maize roots confirm the nonlinear distribution of water uptake predicted by the porous pipe model. The major design parameter governing the distribution of water uptake along a porous pipe is the ratio between its axial and radial hydraulic resistance. However, total flow is proportional to the pipe's overall resistance. These results suggest the existence of a tradeoff between the effective utilization of root length and the total capacity for water uptake.  相似文献   
8.
The social amoeba Dictyostelium discoideum is amenable to cultivation in the immobilised state most simply by colonisation of porous supports. An analysis of the growth behaviour of D. discoideum in the immobilised state is reported. For this purpose, D. discoideum was cultivated in continuously operated reactors in a suspension culture (homogeneous system) and immobilised on a porous support (heterogeneous system). Thus, it is possible to compare homogeneous and heterogeneous systems under steady-state conditions. Immobilisation was achieved by the colonisation of porous glass beads (SIRAN). Simple models are applied in order to describe the growth behaviour of fractions of both the cells in free suspension and the cells inside the porous carrier. This analysis shows that D. discoideum inside the pores grows at a rate of only about 10% compared with that in free solution. The consequence of this behaviour is discussed in terms of reactor performance.  相似文献   
9.
In this article, foundry sand as waste material has been valorized in ceramic brick manufacturing at industrial scale. The employment of a waste coming from one industry as an input for another is one of the key concepts of industrial ecology. To study the environmental behavior of the ceramic bodies in different life cycle stages, three leaching tests have been developed. We used an EN 12457 equilibrium leaching test with distilled water and a Wastewater Technology Centre acid neutralization capacity (WTC‐ANC) leaching test with different acidic leachates to carry out the environmental evaluation under different granular scenarios to ascertain the possibilities of the reuse or disposal of this granular material at the end of its useful life (end‐of‐life stage). Finally, we used a NEN 7345 diffusion leaching test for construction materials, with the aim of studying the environmental assessment at the use stage. Regulated pollutants in both stages have been evaluated. Furthermore, other soluble salts have been analyzed because they are closely related to the efflorescence phenomenon in bricks. Results indicate that core and green sand from the foundry industry can be used to replace clay content in construction materials, and that these foundry‐sand‐based ceramics improve some soluble salt results. Despite this fact, at the end‐of‐life stage in an inert waste landfill, lead, arsenic and chromium can be an environmental problem, both for commercial bricks and for foundry‐sand‐based bricks. This work can contribute to the determination of viability of sustainable processes of brick manufacturing that use foundry wastes as raw materials.  相似文献   
10.
Interest in using nanoporous materials for sensing applications has increased. The present study reports a method of preparing well-ordered nanoporous gold arrays using a porous silicon (PSi) template. Gold nanolayer could be electrodeposited on the surface of the PSi template at low electrolysis currents in low concentration of chloroauric acid (HAuCl4) solution. Surface morphology characterizations and optical measurements revealed that a PSi-templated nanoporous gold (Au–PSi) array well replicated the nanoporous structure and retained the optical properties of PSi. Fourier transform reflectometric interference spectra showed that a characteristic blue-shifted effective optical thickness (EOT) was observed due to the low refractive index of the gold film. An optical DNA biosensor was then fabricated via the self-assembly of single-stranded DNA (ssDNA) with a specific sequence on the surface of Au–PSi. The attachment of ssDNA and its hybridization with target oligonucleotides (ODNs) persistently caused the blue shift of the EOT. Consequently, a relationship between the EOT shift and the ODN concentration was established. The mechanism of the optical response caused by DNA hybridization on the Au–PSi surface was qualitatively explained by the electromagnetic theory and electrochemical impedance spectroscopy (EIS). The lowest detection limit for target ODNs was estimated at around 10−14 mol L−1, when the baseline noise, a variation in the value of EOT is around 5 nm. The fabricated Au–PSi based optical biosensor has potential use in the discovery of new ODN drugs because it will be able to detect the binding event between ODNs and the target DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号